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ABSTRACT
The link between subglacial hydrology and basal sliding has prompted work on basal 
hydrology models with water pressure and storage as prognostic variables. We find that a 
commonly used model of distributed drainage through linked cavities underpredicts 
winter water pressure when compared to borehole observations from Isunnguata Sermia 
in Western Central Greenland. Possible causes for this discrepancy including unrealistic 
model inputs or unconstrained parameters are investigated through a series of modeling 
experiments on both synthetic and realistic ice sheet geometries. We find that 
conductivity acts as a proxy for the connectivity of the linked cavity system and should 
therefore change seasonally. Model experiments also suggest that trends in winter sliding 
velocity are more closely related to winter water storage rather than pressure.     
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Hydraulic Conductivity as a Proxy for Drainage System

Connectivity in a Subglacial Hydrology Model

Preface

This thesis has been written in journal article format intended for submission for

publication in 2016.

1.1 Introduction

Surface melt input into the subglacial drainage system plays a significant role in

controlling the rate of basal sliding of the Greenland Ice Sheet [Shepherd et al., 2009,

van de Wal et al., 2008, Zwally et al., 2002]. Surface melt is known to enhance ice flow

as surface velocities can more than double from winter to early summer [Bartholomew

et al., 2010, Sundal et al., 2011]. However, relationship between surface melt and basal

sliding is poorly understood. More surface melt does not necessarily translate to faster

basal sliding. The complex coupling between surface melt and sliding speed depends

on the evolution of the subglacial drainage system as it adapts to variations in melt

input to the bed on diurnal and seasonal time scales [Hewitt et al., 2012].

Seminal publications such as Budd et al. [1979] and Bindschadler [1979] have long

recognized a possible link between water pressure in the subglacial drainage system

and basal sliding. Efforts are ongoing to develop sliding laws that mathematically

relate sliding velocity to water pressure [e.g. Schoof , 2005]. Sliding laws formalize the

intuitive idea that higher water pressure reduces contact between the ice sheet and

bed leading to faster sliding. Borehole pressure measurements in Greenland illustrate

a shortcoming of this idea. Measurements presented in Wright et al. [2016], Ryser et

1
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al. [2014], and Meierbachtol et al. [2013] show that borehole pressures remain high

through the fall and winter even as sliding speed decreases.

The difficulty of directly observing the subgacial drainage system has motivated

work on basal hydrology models capable of capturing the evolution of the drainage

system by simulating water storage and pressure. Models of distributed drainage

through linked cavities introduced by Hewitt [2011] and Schoof et al. [2012] have pro-

vided a versatile foundation for a family of recent models that incorporate additional

drainage elements such as channels [Hewitt et al., 2012, Werder et al., 2013] and till

[Bueler and van Pelt, 2014]. Model developers face the difficult task of balancing

practical mathematical and computational concerns with physical fidelity. Decisions

about what drainage elements to include or whether certain simplifications to the

physics are justified must be weighed against sparse observations.

A known problem with current models is their tendency to underpredict win-

ter water pressure [Flowers, 2015]. The inability of models to predict high winter

pressure suggests they may be neglecting or oversimplifying an important physical

process. Previous modeling work has focussed on the evolution of the drainage sys-

tem during the melt season, but the winter mode of the drainage system is perhaps

equally important. Sole et al. [2013] have observed that high melt years do not have

significantly faster surface velocities than low melt years because fast summer ice flow

is offset by slow ice flow in subsequent winters. The winter dynamics of the subglacial

drainage system are important for determining total annual ice flow.

Here we address the problem of low modeled winter water pressure. We find that a

commonly used subglacial hydrology model posed by Schoof et al. [2012] severely un-

derpredicts winter water pressure when compared to borehole observations. Through

a gamut of simulations on both synthetic (section ??) and realistic (section ??) ice

sheet geometries, we investigate a number of possible causes of low modeled pressure

including unrealistic model input and poorly constrained parameters.

We conclude that the hydraulic conductivity parameter in Schoof et al. [2012]

and related models, which is usually treated as a constant, serves as a proxy for

2
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the connectivity of the linked cavity system and should therefore undergo seasonal

changes (section 1.5). Our results allude to significant variations in the efficiency of

the distributed drainage system as hypothesized by Meierbachtol et al. [2013] and

Andrews et al. [2014]. Results also indicate that there may be less winter water

storage after high melt summers than low melt summers, providing an alternative

explanation for trends in winter sliding speed observed by Sole et al. [2013].

1.2 Model Description

We implement a model of distributed drainage through linked cavities developed

by Schoof et al. [2012]. The model predicts spatially averaged sheet height h and

hydraulic potential φ on a two-dimensional spatial domain Ω with boundary ∂Ω.

Model inputs include bed elevation B, ice thickness H, melt input to the bed m,

and sliding speed ub. Schoof et al. [2012] arrive at their continuum description of

flow through linked cavities by starting with an ODE for cross sectional area S of a

single cavity. S undergoes a spatial averaging process to arrive at a new ODE for

spatially averaged cavity height h (sometimes also referred to as sheet height or sheet

thickness). Physically, h is the average height of all discrete cavities and links over

an area determined by the the spatial resolution of the computational mesh used in

simulations. Schoof et al. [2012] make the simplifying assumption that links between

cavities are controlled by the same balance of opening and closing processes as cavities

and that their size therefore scales with cavity size.

Cavity height h is modelled as a balance between opening vo due to sliding over

bedrock bumps and creep closure vc:

∂h

∂t
= vo(h)− vc(N, h) = ub(hr − h)

lr
− AhN3 (1.1)

3
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Here hr is characteristic bump height, lr is characteristic bump length, A is the rate

factor for ice, and N is effective pressure. Cavity opening due to melting of cavity

walls is assumed to be negligible. Effective pressure is defined as

N = pi − pw

where pi = ρigH is ice overburden pressure and pw is the water pressure. Hydraulic

potential φ and water pressure are directly related. In particular

φ = φm + pw

where φm = ρwgB is the elevation potential. Hence, effective pressure can also be

related directly to the primary model unknown φ by

N = φ0 − φ

with φ0 = φm + pi.

The height of water hw within cavities obeys a conservation equation

∂hw
∂t

+∇ · q = m (1.2)

with melt input to the bed m and flux q. Schoof et al. [2012] propose a general

spatially averaged flux relation of the form:

q = −khαw|∇φ|
β−2∇φ (1.3)

Here k is hydraulic conductivity, α ≥ 1, and β > 1. We use α = 5
4 and β = 3

2

for turbulent flow. Broadly speaking, k affects how easily water flows through the

drainage system. It is useful to motivate the role of k by considering the case when

4
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Table 1.1: This table summarizes all model constants, inputs, and parameters. Default
values are provided where applicable.

Description Symbol Value Units
Constants

Gravitational acceleration g 9.81 m s−2

Ice density ρi 910 kg m−3

Water density ρw 1000 kg m−3

Rate factor for ice A 5 × 10 −25 Pa−3 s−1

Flux exponent α 5/4 -
Flux exponent β 3/2 -

Model Inputs
Bed elevation B - m
Ice thickness H - m
Melt input m m s−1

Sliding speed ub - m s−1

Potential at 0 pressure φm ρwgB Pa
Ice overburden pressure pi ρigH Pa
Overburden Potential φ0 φm + pi Pa

Model Outputs
Cavity height h - m
Hydraulic potential φ - Pa
Water Pressure pw φ− φm Pa
Effective Pressure N φ0 − φ Pa

Model Parameters
Hydraulic Conductivity k - m7/4kg−1/2

Bump height hr 0.1 m
Bump spacing lr 2 m

5
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β = 2 and α = 1 in which (1.3) simplifies to Darcy’s law for flow through a porous

medium

q = −khw∇φ.

In Darcy’s law, hydraulic conductivity can be written as k = k0/η where k0 is the

intrinsic permeability of the porous medium and η is the viscosity of the fluid. In-

creasing fluid viscosity or decreasing permeability reduces the conductivity, thereby

increasing flow resistance. In the more general context of equation (1.3), k may de-

pend on the geometry of the local drainage system. Clarke [1996] presents a flux

relation for laminar flow through parallel sided plates

q = − w

12ηlh
3
w∇φ

where w is the cross-flow width of the sheet and l is the along flow length. Hewitt

[2011] writes this flux relation in a form resembling Darcy’s law:

q = −k0

η
h3
w∇φ = −kh3

w∇φ

Here, k0 = w/12l is now a geometric factor. We can think of k = k0/η as analagous to

the hydraulic conductivity familiar from Darcy’s law, bearing in mind that its precise

physical meaning is now different as it depends on drainage system geometry rather

than the permeability of some porous medium.

Similarly Bueler and van Pelt [2014] write the turbulent flux relation (1.3) with

α = 5
4 and β = 3

2 in the style of Darcy’s law

q = −Khw∇φ.

where K = khα−1
w |∇φ|β−2 is called the effective conductivity. Clarke [1996] notes

that for turbulent flow through conduits, effective conductivity depends on the local

drainage system geometry, a roughness measure, as well as the hydraulic potential.

6
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In the present case, we interpret the term khα−1
w as a primarily geometric factor that

depends on the subgrid scale drainage system geometry as well as bed roughness.

Between equations (1.1) and (1.2) there are three unknowns (h, hw, and φ). To

close the model, Schoof et al. [2012] assume that cavities are initially fully saturated

and remain so throughout time:

hw(x, y, 0) = h(x, y, 0), ∂hw
∂t

(x, y, t) = ∂h

∂t
(x, y, t)

Combining (1.1) and (1.2) then yields a nonlinear elliptic PDE for the potential

∇ · q + vo(h)− vc(h,N) = m (1.4)

which is subject to pressure (Dirichlet) boundary conditions on part of the boundary

∂ΩD and flux (Neumann) boundary conditions on the remainder of the boundary

∂ΩN . Neumann boundary conditions take the form

q · n = qN

where n is the outward normal vector to the boundary and qN is some prescribed

influx or outflux. Usually, φ = φm (zero pressure) is prescribed on boundaries where

outflow is expected and q · n = 0 (zero flux) is prescribed elsewhere.

The model is advanced in time by solving the PDE (1.4) with h fixed to obtain

φ then solving (1.1) with φ fixed to advance h in time. On initialization of the

model, cavities are assumed to be fully saturated. The PDE ensures that cavities

remain saturated by enforcing ∂hw

∂t
= ∂h

∂t
so that water height and cavity height evolve

together. In effect, the hydraulic potential is chosen at each time step to maintain

the saturation assumption. It should also be noted that solving for the hydraulic

potential is equivalent to solving for the water pressure as water pressure can be

easily derived from potential as pw = φ− φm.

7
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As currently posed, the model is flawed in that the PDE may predict water pres-

sure below zero or well above overburden, which are equivalent to φ < φm and φ > φ0

respectively. Underpressure, or water pressure below zero, is most prevalent on real-

istic ice sheet geometries near the margin or other regions with thin ice [Schoof et al.,

2012]. Underpressure occurs because the model is not properly equipped to deal with

partially filled cavities. In a situation where cavities would realistically lose satura-

tion, partially filling with air, the PDE maintains saturation by predicting negative

water pressure. Overpressure, or water pressure above overburden, usually occurs in

areas with high melt input. Although water pressure above overburden is physically

plausible, the model does not include specialized physics for ice uplift that would al-

leviate extreme overpressure possible in the model. The opening of an ice-water gap

is modeled in Tsai and Rice [2010] but has yet to be integrated into a more general

model.

To remedy these problems, Schoof et al. [2012] propose an alternative method for

determining hydraulic potential when overpressure or underpressure are present. In

such instances, φ is determined by minimizing the functional

J(φ) =
∫

Ω

[
1
β
khα|∇φ|β + 1

4AhN
4 − (m− vo(h))φ

]
dΩ−

∫
∂ΩN

qNφdΓ (1.5)

subject to the constraints φm ≤ φ ≤ φ0 (or equivalently 0 ≤ pw ≤ pi) and any applied

Dirichlet boundary conditions. Minimizing (1.5) subject to constraints always yields

a solution for water pressure in a physically plausible range. If no constraints are

imposed, minimizing (1.5) is equivalent to solving the PDE (1.4).

Where the solution to (1.5) has regions of zero water pressure or overburden

pressure, the rates of change of hw and h are different and the two variables should

technically be solved for separately using the ODE (1.1) and conservation equation

(1.2) respectively. However, this requires complicated procedures for dynamically

tracking these regions and solving for the two unknowns separately. Since regions

of underpressure or overpressure are generally small, we continue to treat cavities as

8
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saturated in these areas and advance both h and hw using the typical ODE (1.1).

Our approach compares to Bueler and van Pelt [2014] who also implement a method

to prevent underpressure and overpressure but forgo the complexities of solving for h

and hw separately.

1.2.1 Numerical Solution

We have implemented the model posed by Schoof et al. [2012] in FEniCS, a finite

element package emphasising variational forms, callable form Python or C++ [Alnæs

et al., 2015]. All spatially varying fields are discretized using linear Lagrange finite

elements. The model must be initialized with an initial cavity height h0. The standard

time stepping procedure involves solving the PDE (1.4) with h fixed, then advancing

the ODE (1.1) for h by a given time step with φ fixed. The PDE (1.4) is nonlinear and

is solved in FEniCS using Netwon’s method [Nocedal and Wright, 2006]. The ODE

(1.1) is solved using a parallel implementation of an implicit Adams method [Brown

et al., 1989]. If at any point the solution to the PDE contains under or overpressure

regions, φ is instead determined by minimizing the functional (1.5) subject φm ≤ φ ≤

φ0 and any Dirichlet boundary conditions using the L-BFGS-B algorithm for solving

constrained optimization problems [Byrd et al., 1995]. Since solving the PDE is much

less costly than solving the constrained optimization problem, we always solve the

PDE first to obtain an initial guess for the optimization algorithm.

1.2.2 Model Limitations

As a reference, we compare modeled pressures to borehole pressure measurements

from Isunnguata Sermia [see Meierbachtol et al., 2013, Wright et al., 2016], which

typically hover near overburden pressure throughout the winter. It is not clear if the

linked cavity model is a good conceptual model of the subglacial drainage system

in this region of Greenland or if a multi-element model with channels [e.g. Werder

et al., 2013] or till [Bueler and van Pelt, 2014] might be more suitable. There is

9
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some evidence to support a distributed modeling approach versus one with explicit

channelization. For example, Meierbachtol et al. [2013] have argued that the distance

channels propagate into the ice sheet interior is limited based on borehole measure-

ments and numerical experiments. Similarly, Andrews et al. [2014] noted that few

borehole pressure measurements have been obtained for channelized regions of the

bed, which they attribute to both the scarcity of borehole measurements as well the

limited spatial influence of channels on water pressure.

It is also unclear if the omission of sediment is an important one. Borehole mea-

surements indicate that the drainage system under Isunnguata Sermia is characteristic

of a hard bed [Harper et al., 2015]. Further south, Dow et al. [2013] have found seis-

mic evidence of sediment underlying Russel glacier. However, the spatial extent and

thickness of till is largely unknown. Beyond the omission of some drainage elements

there are broader limitations that apply to any model with a linked cavity compo-

nent. Hoffman and Price [2014] provide a thorough discussion of these limitations

including uncertainties in the flux relation and rate of creep closure.

1.3 Synthetic Experiments and Results

In the following model experiments on synthetic geometries, we explore the sen-

sitivity of winter water pressure to bed geometry, hydraulic conductivity, and sliding

speed. All synthetic experiments are conducted on a 60 x 20 km model domain. Dis-

cretized equations are solved on a mesh with triangular elements having circumradii

of ∼500 m. A plastic ice-sheet surface profile [Cuffey and Patterson, 2010, chap. 8]

with a maximum thickness of 1500 meters (≈ 167 kPa yield stress) is used for ice

sheet thickness. A zero pressure (φ = ρwgB) boundary condition is applied at the

terminus (x = 0) and zero flux applied at the remaining boundaries. All synthetic

model inputs are shown in figure 1.2. In subsequent experiments we record pressure

at the three test points indicated in figure 1.2 (a), which are intended to capture the

spatial variability in water pressure. In contrast to previous studies such as Hoffman

10
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and Price [2014] and Hewitt. [2013] that couple basal hydrology models to ice sheet

models, we do not model ice sheet dynamics. Basal sliding speed and ice thickness

are prescribed.

Fig. 1.1.: This figure shows all synthetic model inputs. (a) Synthetic experiments
share a 60 x 20 km model domain with 0 pressure applied at the margin (x = 0km)
and 0 flux applied at all other boundaries. 1, 2, and 3 are points where pressure
is recorded for subsequent plots. (e) High melt mh and low melt ml variants (f)
This panel shows scaling functions used for time variable melt, conductivity, and
sliding speed functions. t0 is the shut off time when melt reaches 0. b is lag time of
conductivity behind melt.

1.3.1 Reference Experiment (REF)

In this experiment, we simulate winter water pressure on both a flat bed and

trough. We allow both model runs to reach a steady state with persistent melt input

mh. Melt is then reduced during the melt shut off period by multiplying melt rate by

a scaling function

ms(t) = max
cos

(
πt

2to

)
, 0
 (1.6)

with a shut off time parameter to that controls when melt ceases. Here, we use a shut

off time of one month. Additional model inputs and parameters for the flat bed and

trough runs (REF FB and REF T) are listed in table 1.3. Parameter values are based

on Schoof et al. [2012], Werder et al. [2013], and Hewitt et al. [2012]. We use default

11
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Fig. 1.2.: This figure shows all synthetic model inputs. (a) Synthetic experiments
share a 60 x 20 km model domain with 0 pressure applied at the margin (x = 0km)
and 0 flux applied at all other boundaries. 1, 2, and 3 are points where pressure
is recorded for subsequent plots. (e) High melt mh and low melt ml variants (f)
This panel shows scaling functions used for time variable melt, conductivity, and
sliding speed functions. t0 is the shut off time when melt reaches 0. b is lag time of
conductivity behind melt.

values of 0.1m for hr and 2m for lr. k is selected to produce sensible summer steady

state water pressures around overburden pressure. In our reference runs, sliding speed

is time invariant. Winter water pressures at the three test points are plotted in figure

1.3.

The reference experiment highlights a significant disparity between modeled and

observed water pressures. Whereas borehole observations hover around overburden

pressure through the winter, modeled pressures plummet. In the flat bed run, pres-

sures at the three test points approach zero by the end of winter. Pressures remain

higher in in the trough run – between 26-40% of overburden pressure – due to melt

water retention in the trough. Even so, spatially averaged pressure decreases by

almost 85% from the summer steady state to the end of winter.

Certainly, we should not expect the model to closely agree with observations in

this highly simplified scenario. However, we do not see even broad agreement. In

the following experiments, we test a number of factors that might contribute to this

12
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problem including unrealistic model inputs in the form of sliding speed and ice sheet

geometry as well as poorly constrained parameters.

Fig. 1.3.: This figure shows the rapid fall of winter water pressures with standard
model parameters. Solid lines indicates pressures for the flat bed run (REF FB)
while dashed lines are for the trough run (REF T). Colors correspond to the three
test points shown in figure 1.2 (a)

.

1.3.2 Sliding and Bump Parameter Experiment (SBP)

The sliding speed used in the reference experiment is appropriate for summer but

too high for winter in Isunnguata Sermia [Bartholomew et al., 2010]. Large values of

ub correspond to a large cavity opening rate which in turn reduces water pressure. The

cavity opening rate also depends on uncertain values of the bedrock bump parameters

hr and lr. Hence, it might be that low winter pressure is caused by a combination of

unrealistic bump parameters and sliding speed.

In the following experiment, we test this idea by simulating winter pressure on

a trough with sliding speed decreasing as a function of time and a range of bedrock

bump parameters. We perform nine total runs with bump heights of 0.05, 0.1, and

0.5m in combination with bump lengths of 1, 2, and 5m. These values span the

range of bedrock bump parameters used in publications including Schoof et al. [2012],

Werder et al. [2013], Hoffman and Price [2014], Hewitt. [2013], and Bueler and van

13
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Pelt [2014]. To compensate for changes in bump height or spacing, the conductivity

is altered to assure that the modeled summer pressures are comparable to borhole

observations. In each run, spatially averaged summer steady state pressure is around

80% of overburden pressure. Conductivity values used in each run are shown in table

1.2.

All runs use the same time variable sliding speed u∗
b given by

u∗
b(t) = us(t)ub(x, y) (1.7)

where us(t) is a scaling function defined by

us(t) = ms(t)
(

1− umax
max(ub)

)
+ umax

max(ub)
.

Here umax is the maximum desired winter sliding speed. When the melt scaling

function ms(t) is 1, u∗
b = ub and when ms(t) = 0, the maximum value of u∗

b at any

point is umax. We impose a realistic umax for Isunnguata Sermia of 100 ma−1.

Table 1.2: Constant k values (units m7/4kg−1/2) for each run in the SBP experiment with a
different combination of the bump height parameters. Conductivity values are adjusted so
that spatially averaged summer steady state pressure in each run is near 80% of overburden
pressure.

lr
1m 2m 5m

hr

0.05m 1.1× 10−2 1.33× 10−2 2.1× 10−2

0.1m 4.65× 10−3 5.2× 10−3 8.5× 10−3

0.5m 6.2× 10−4 7.3× 10−4 1.16× 10−4

1m 2.55× 10−4 3.05× 10−4 4.75× 10−4

2m - - 2× 10−4

Figure 1.4 shows that reducing sliding speed is not sufficient to maintain high

winter pressure regardless of the values of the bedrock bump parameters. Different
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Fig. 1.4.: Each panel shows spatially averaged pressures for a specific bump height
hr and various bump lengths lr. In each model run, sliding speed is time variable.

.

bump lengths cause only miniscule changes in spatially averaged winter pressure.

In contrast, there is a clear trend between larger bump heights and higher winter

pressure. Spatially averaged pressures fall to around 10% of overburden pressure in

each of the 0.05 and 0.1m runs, though the decline in pressures in early winter is

more gradual in the 0.1 meter runs. For a bump height of 0.5m, spatially averaged

pressures drop to 30-40% of overburden pressure by the end of winter. While these

pressures are still well below borehole observations, it is worth asking why they are

higher when compared to runs with lower bump heights.

The relationship between bump height and winter pressure seems counterintuitive.

Taller bedrock bumps increase the cavity opening rate which should reduce water

pressure. Indeed, increasing hr reduces pressure if hydraulic conductivity is fixed.

Therefore, runs with larger bump heights have unrealistically low summer steady

state water pressures unless unless k is decreased to compensate. It is not large
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values of hr but low values of k contributing to higher pressures in the 0.1 and 0.5m

bump height runs.

These results suggest that one approach to remedying low winter pressure might

be to further increase hr and impose a smaller constant value of k. Along these lines,

we performed four additional runs with large bump heights. The first three runs used

an hr of 1m combined with lr values of 1, 2, and 5m. Conductivities for these runs are

also shown in table 1.2. Spatially averaged pressures fell by nearly 30% by the end of

winter in each run. We then performed a run with an hr of 2m (well beyond what has

been used in other publications) and lr of 5m. Spatially averaged pressure remained

closer to observations, dropping only around 17% by the end of winter. Nonetheless,

this run tests the limits of what is physically plausible in other respects. Due to

low conductivity, summer steady state sheet height h exceeded 1m over roughly a

third of the spatial domain. Since h is a spatial average and water is not distributed

uniformly at the bed, this would require large, potentially multi-meter tall cavities in

these areas. Much of the annual melt input is stored in the sheet.

1.3.3 Time Varying Conductivity and Sliding

Perhaps a more physically plausible solution to low winter pressure not contingent

on imposing a large bump height would be to allow conductivity to decrease over time.

In the following two experiments, conductivity mimics melt input both spatially and

temporally. In particular k is now a a function of the form

k = ks(t)m(x, y) + kmin (1.8)

where kmin is some prescribed minimum conductivity and ks(t) is a conductivity scale

function that mimics the melt scale function ms(t). The conductivity scale function

has the form

ks(t) =
(
kmax − kmin

max(m)

)
ms(t− b) (1.9)
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where kmax is highest attainable conductivity, and b is the lag of conductivity behind

melt. The highest possible conductivity is achieved when and where melt is at its

highest. When melt ceases, conductivity simply becomes a constant kmin. The idea

is that decreasing melt leads to reduced conductivity. We interpret this change in

conductivity as reflecting subgrid scale changes in drainage system geometry. These

small-scale geometric changes reduce the connectivity of the linked cavity system and

therefore discharge. In effect, we adopt conductivity as a proxy for drainage system

connectivity.

Shut Off Time Experiment (ST)

We now simulate winter water pressure on a flat bed with sliding speed and con-

ductivity related to melt input via equations (1.7) and (1.8) respectively. We perform

six model runs – three runs with high melt input mh (ST HM) and varying shut off

times to of a day, week, and month. We then perform three similar runs (ST LM)

with low melt input ml (see table 1.3). Figure 1.5 shows that reducing conductivity

in concert with melt produces high winter water pressures broadly consistent with

observations. For all three shut off times tested, pressures exhibit a similar pattern

characterized by a small spike during the melt shut off period followed by a gradual

decline over the winter. One consequence of linking conductivity to melt spatially as

in equation (1.8) is that there is little difference between pressures in the high and

low melt runs. Any pressure increase that might result from additional melt input is

offset by higher conductivity.

The shut off time experiment verifies that changing conductivity is an effective

way to prevent low winter pressure. It also serves as a first attempt at finding bounds

on k by comparing the model with borehole observations. Both the summer upper

bound kmax and the winter lower bound kmin on conductivity are chosen to yield

sensible pressures. If k is too high at any point in time, pressures drop unrealistically

low. On the other hand, there is perhaps no identifiable minimum value for k since if
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Fig. 1.5.: Each panel shows the results of a high melt and low melt model run in the
ST experiment with a with a particular shut off time. Solid lines indicate pressures
for the high melt experiments and dashed lines for the low melt experiments. Colors
correspond to the three standard test points.

kmin is too low, pressure rises to overburden over most of the domain in which case

the pressure constraints in the model apply.

Lag Time Experiment (LT)

Changes in melt input may not immediately impact the connectivity of the linked

cavity system. Therefore, it may be sensible to delay the response of conductivity

to melt by imposing a nonzero lag time b in the conductivity scale function (1.9).

This experiment tests the impact of lag time on winter water pressure and storage.

The setup is essentially the same as the shut off time experiment ST except that we

now test three lag times b of a day, week, and month with a fixed shut off time to of

one month for both high (LT LM) and low melt input (LT HM). Figures 1.6 and 1.7

display winter pressures and water storage respectively for different lag times.

Figure 1.6 shows that long lag times of multiple weeks to a month are improbable.

A lag time of one day yields consistently high pressures resembling those in the shut

off time experiment ST. As lag time is extended, pressures drop during the period of

high conductivity but decreasing melt input. This effect is small in the week lag test

where pressures drop by only around 2-12% but more pronounced in the month lag
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Fig. 1.6.: Each panel shows the results of a high melt and low melt model run in the
LT experiment with a with a particular lag time b. Solid lines indicate pressures for
the high melt runs and dashed lines for the low melt runs. Colors correspond to the
three standard test points.

Fig. 1.7.: Each panel shows the total sheet volume for the high and low melt runs in
the LT experiment with a particular lag time. High melt sheet volume is indicated
with a solid line and low melt volume with a dashed line.

test where pressures drop by up to 23% in the low melt run and up to 38% in the

high melt run.

Unlike the shut off time experiment where the quantity of summer melt input was

essentially irrelevant, there is a notable difference in pressures between the high and

low melt variants of the week and month lag tests. This difference can be attributed to

the spatial dependence of conductivity on melt. Initial summer conductivity is higher

in the high melt scenario. Consequently, during the melt shut off period, stored water

in the sheet drains rapidly and pressure drops substantially as shown in figuire 1.7.
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In contrast, sheet drainage is less rapid and the associated pressure drop less severe

for the low melt scenario since the initial summer conductivity is lower.

1.4 Realistic Experiments and Results

In the preceding synthetic experiments, we showed that reducing hydraulic con-

ductivity can reproduce observed high winter water pressures on synthetic geometries.

In the final three experiments, we test if this result is robust for a more complicated

ice sheet geometry by applying the model to Isunnguata Sermia in Western Central

Greenland. For model inputs, we use measurements of bed elevation and ice thickness

from Bamber et al. [2013], accumulation from SeaRISE [2012], and surface velocity

from Rignot and Kanagaratnam [2006]. All model inputs are plotted in figure 1.8.

We again use a numerical mesh with a spatial resolution of ∼500 m. In place of the

true margin we define the left edge of the domain to be the 50m ice thickness contour

line (indicated by the dashed line in figure 1.8(c)). Imposing a minimum ice thickness

of 50m helps prevent excessively large cavity opening rates in the ODE (1.1) due to

high sliding speeds and low creep closure rates near the margin.
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Fig. 1.8.: This figure shows inputs for realistic model runs on Isunnguata Sermia. (c)
The dashed line indicates the 50 meter ice thickness contour where a zero pressure
Dirichlet boundary condition is applied. Zero flux is applied on all other boundaries.
1, 2, 3, and 4 are points where pressure will be recorded for experiments on realistic
geometry. (d) Sliding speed is taken to be the observed surface velocity.

Summer surface velocities exceed 100 ma−1 throughout much of the domain.

Hence, we assume that most ice motion can be attributed to basal sliding and use

surface velocity for the summer sliding speed. For simplicity, we also assume that all

surface melt is routed directly to the underlying bed. Modeled water pressures on

a realistic bed tend to be spatially heterogeneous. Therefore we supplement water

pressure time series recorded at the four test points shown in figure 1.8(c) with a

number of 2D plots.

1.4.1 Reference Experiment on Realistic Geometry (REFR)

We now replicate the reference experiment (REF) on a realistic ice sheet geometry,

simulating winter pressures with time invariant sliding speed and constant k. Water

pressures at the four test points are shown in figure 1.9. Summer steady state and

end of winter water pressure fields are plotted in figure 1.10.

Realistic ice sheet geometry creates complex temporal and spatial patterns in

water pressure. Pressures at the first three test points resemble earlier runs on a

21



www.manaraa.com

synthetic bedrock trough, dropping by around 40 - 50% before leveling out in late

winter. Curiously, water pressure at the fourth test point drops by only around 5%.

Examining figure 1.10 shows that this test point is situated in one of two perennially

pressurized bedrock troughs. Steep bed gradients route water into troughs while the

reverse bed slope near the margin limits outflow. In spite of these high pressure

features, the spatially averaged water pressure falls by almost 50% over the 7 months

simulated. Although bedrock geometry creates high pressure regions, it is clear that

changing conductivity and sliding speed is necessary to produce high water pressure

over a most of the domain.

Fig. 1.9.: This figure shows winter water pressures for the REFR experiment on a
realistic geometry with constant conductivity and time invariant sliding speed. Colors
correspond to the four test points shown in 1.8 (c).

1.4.2 Time Variable Sliding on Realistic Geometry (TVSR)

As in earlier synthetic runs, we found that reducing sliding speed without also

reducing conductivity is not sufficient to maintain high winter pressure on a realistic

geometry. To test this we simulated winter pressure on a realistic geometry with

time variable sliding and fixed k. Results are not plotted since they mimic results

from previous experiments. Pressures at points 2, 3, and 4 remained relatively steady

during the melt shut off period while pressure at the first test point dropped by around
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Fig. 1.10.: This figure shows summer and winter pressures on a realistic ice sheet
geometry for the REFR experiment with constant conductivity and time invariant
sliding speed. (a) shows the end of summer steady state pressure and (b) shows the
end of winter pressure.

45 %. After melt ceased, pressures plummeted at test points 1, 2, and 3. Comparable

to REFR, spatially averaged pressure dropped by nearly 50% after 7 months.

1.4.3 Time Dependent Sliding and Conductivity on Realistic Geometry

(TDSCR)

Finally, we simulate winter water pressure on a realistic ice sheet geometry with

time dependent conductivity and sliding speed. Figures 1.11 and 1.12 confirm that,

as in earlier synthetic test cases, reducing conductivity and sliding speed with melt

input yields high winter pressure across most of the spatial domain. Spatially averaged

water pressure remains between 80-90% of overburden pressure throughout the winter.
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Table 1.3: This table shows important model inputs and parameters for each model exper-
iment. Some experiments involve multiple model runs with different inputs indicated by a
suffix after the experiment abbreviation. Some experiments also involve multiple runs using
the same model inputs but different parameters. Where applicable, the number of runs and
any varied parameters are indicated. All runs start from a summer steady state. Unless
otherwise stated, runs use default values of 10cm for hr and 2m for lr.

Name B (m) m(x,y) to ub(x,y) k Figs.
REF FB flat mh - Fig. 1.2

(e)
month ub - Fig. 1.2 (d) 5× 10−3 1.3

Simulates winter pressure on a flat bed with time invariant sliding speed and constant k.
REF T trough - Fig.

1.2 (b)
mh - Fig. 1.2
(e)

month ub - Fig. 1.2 (d) 5× 10−3 1.3

Similar to REF FB except on a trough bed geometry.
SBP (×9) trough - Fig.

1.2 (b)
mh - Fig. 1.2
(e)

month ub - Fig. 1.2 (d) constant,
varies

1.4

9 runs with hr values of 0.05, 0.1, and 0.5m in combination with lr values of 1, 2, and 5m. Sliding
speed is time variable following eq. (1.7) with umax = 100 ma−1. Conductivity is adjusted in
each run to attain an average summer steady state pressure of 80% of overburden pressure.
Conductivity values for each run are shown in table 1.2.
ST LM
(×3)

flat ml - Fig. 1.2
(e)

varies ub - Fig. 1.2 (d) time/spatially
variable

1.5

3 runs with melt shut off times t0 of a day, week, and month. Sliding speed follows eq. (1.7) with
umax = 100ma−1, and conductivity follows eq. (1.8) with kmin = 5× 10−5 and kmax = 5× 10−3.
ST HM
(×3)

flat mh - Fig. 1.2
(e)

varies ub - Fig. 1.2 (d) time/spatially
variable

1.5

3 similar runs to ST LM except with higher melt input.
LT LM
(×3)

flat ml - Fig. 1.2
(e)

month ub - Fig. 1.2 (d) time/spatially
variable

1.6,
1.7

3 runs with conductivity lag times b of a day, week, and month. Sliding speed follows eq.
(1.7) with umax = 100ma−1, and conductivity follows eq. (1.8) with kmin = 5 × 10−5 and
kmax = 5× 10−3.
LT HM
(×3)

flat mh - Fig. 1.2
(e)

month ub - Fig. 1.2 (d) time/spatially
variable

1.6,
1.7

3 similar runs to LT LM except with higher melt input.
REFR real - Fig. 1.8

(a)
mr - Fig. 1.8
(c)

month ubr - Fig. 1.8 (d) 5× 10−3 1.9,
1.10

Repeat of REF experiment with constant k and time invariant sliding on realistic geometry.
TVSR real - Fig. 1.8

(a)
mr - Fig. 1.8
(c)

month ubr - Fig. 1.8 (d) 5× 10−3 -

Simulates winter pressure on realistic geometry with time variable sliding but constant k. Sliding
speed follows eq. (1.7) with umax = 100ma−1.
TVCSR real - Fig. 1.8

(a)
mr - Fig. 1.8
(c)

month ubr - Fig. 1.8 (d) time/spatially
variable

1.11,
1.12

Simulates winter pressure on realistic geometry with time variable sliding and conductivity.
Sliding speed follows eq. (1.7) with umax = 100ma−1, and conductivity follows eq. (1.8) with
kmin = 7× 10−5 and kmax = 7× 10−3.
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Fig. 1.11.: This figure shows winter pressures for the TVCSR experiment on a realistic
ice sheet geometry where conductivity and sliding speed vary over time. Colors
correspond to the four test points shown in 1.8 (c).

Fig. 1.12.: This figure shows summer and winter pressure for the TVCSR experiment
on a realistic ice sheet geometry where conductivity and sliding speed vary over time.
(a) shows the end of summer steady state pressure and (b) shows the end of winter
pressure.
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1.5 Discussion

1.5.1 Physical Motivation for Changing Conductivity

In our reference experiment, we presented two simple synthetic simulations in

which the model severely underpredicts winter water pressure when compared to

borehole observations. While these synthetic runs are not intended to be physically

realistic, they demonstrate that high winter water pressure is not a natural byproduct

of the model physics. That is, the model does not automatically predict high winter

pressure given standard model parameters and a time invariant sliding speed. This

is not necessarily an intuitive result. It would seem feasible that creep closure might

balance with reduced melt input to prevent any substantial drop in modeled water

pressure. However, this is clearly not the case.

We identified a number of possible causes of low winter pressure from unrealistic

model inputs in the form of sliding speed and ice sheet geometry to poorly constrained

parameters including bedrock parameters and hydraulic conductivity. Numerical ex-

periments demonstrated that the model is not sensitive enough to most of these inputs

and parameters to explain high winter pressure with the exception of hydraulic con-

ductivity. High winter pressure can be attained by imposing a large bump height

in conjunction with a low constant conductivity. This approach requires a bump

height value well above what has been used in other publications and results in an

implausible sheet thickness. Alternatively, high winter can be attained by decreasing

conductivity over time. There is ample numerical evidence to show that varying k in

space and time raises winter pressure, but there is clear physical justification as well.

To motivate why the model underpredicts pressure and why changing conductivity

is a reasonable solution, consider that a tacit assumption in Schoof et al. [2012] is

that the dynamics of the linked cavity system are in some sense simpler on large

spatial scales than small ones. The idea is that fields such as spatially averaged water

pressure and sheet height can be accurately predicted without simulating fine scale

features of the bedrock or linked cavity system. For example, the flux relation (1.3)
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describes aggregate flow through a patch of the bed a fraction of a square kilometer

containing many invididual links and cavities overlying bumpy bedrock. Yet, it has

only an implicit dependence on the complex, subgrid-scale geometry of the ice and

bedrock via the geometric factor khα−1, where k usually taken to be constant. This

geometric factor is perhaps flawed in that it fails to capture small scale changes in

the shape and interconnectivity of cavities that affect discharge and pressure.

Observed borehole pressures likely remain high due to reduced connectivity of

the drainage system over the winter. Drainage system connectivity depends on small

scale features of the ice and bedrock geometry that cannot be explicitly accounted

for in the model. To circumvent this issue, hydraulic conductivity k can be used

as a proxy for connectivity. Given that small scale bedrock features parameterized

through hr and lr are included in the creep closure term in equation (1.1), it is

also sensible to parameterize the effect of small scale drainage system geometry on

discharge. Physically, changes in conductivity reflect changes in the local drainage

system geometry due to the opening and closing of links or alterations to the shape of

cavities. These geometric changes affect aggregate flux through a patch of the linked

cavity system. High values of k represent a well connected section of the linked cavity

system with high discharge while low values represent a more isolated section with

low discharge.

1.5.2 Constraining Conductivity

Ideally, we might account for changes in connectivity in an elegant way by revising

the geometric factor khα−1 in the flux relation – perhaps by expressing k in terms

of the other model unknowns such as h. One precedent is provided by Flowers and

Clarke [2002] who employ a sheet height dependent conductivity for a porous sediment

layer. Another possibility might be to increase the exponent α to reduce discharge

when sheet height is low. However, it is not clear what functional form the geometric

factor should take. Tying conductivity to melt as in equation (1.8) is, though not
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an ideal solution, a practical alternative to modeling the complex physics controlling

conductivity. It qualitatively captures the idea that reduced melt input corresponds

to a low discharge, disconnected drainage system caused by the closure of links or

changes to the shape of cavities.

Experiments involving temporally and spatially variable conductivity show that

equation (1.8) works well in practice at keeping water pressure broadly in line with

observations given a suitable summer upper bound kmax and and winter lower bound

kmin on conductivity. Approximate upper and lower bounds can be obtained by com-

paring the model to observations. One such approach is outlined by de Fleurian et al.

[2014] who use observations of a Swiss glacier to tune hydraulic transmissivity, a field

closely related to conductivity. Along similar lines, we compare modeled pressures to

borehole measurements in Wright et al. [2016] and Meierbachtol et al. [2013] to ob-

tain rough estimates for summer and winter conductivity. Variations between models

mean that a suitable conductivity range in one model is not necessarily applicable to

another model. For example, de Fleurian et al. [2014] use a linear flux relation versus

the nonlinear turbulent flux relation of Schoof et al. [2012]. The units and physical

meaning of conductivity are tied to the specific model conceptualization.

Schoof et al. [2012] and related models such as Werder et al. [2013] and Bueler

and van Pelt [2014] have used constant conductivity values on the order of 10−2 to

10−4 m7/4kg−1/2 depending on the simulation. We found that a value in the middle

of this range, 5 × 10−3 m7/4kg−1/2, is a good baseline for summer conductivity for

both synthetic and realistic runs that use a default bump height of 0.1m. Table 1.2

provides a starting point for obtaining reasonable kmax values for alternative bump

height values. Most previous work has focussed on modeling the melt season rather

than the winter phase of the drainage system. For this reason, we are left to guess

a suitable minimum value kmin. We chose a minimum value of 10−5 m7/4kg−1/2

– two orders of magnitude lower than the summer high conductivity. Low winter

conductivity values in this range could probably be achieved in a poorly connected

linked cavity system.
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1.5.3 Implications for Sliding

Sole et al. [2013] have shown that fast ice flow in high melt summers is offset by

slower flow in subsequent winters. They hypothesize that a well developed channel

system after high melt summers remains partially open during the winter, lower-

ing net water pressure and decreasing sliding speed. In contrast, a less developed

drainage system after a low melt summer is associated with higher net winter pres-

sure and faster sliding. However, borehole pressure measurements generally remain

high throughout the fall and winter, indicating that sliding speed depends on the

quantity and distribution of water in the drainage system as well as pressure.

The lag time experiment suggests that this phenomenon could alternatively be

explained by differences in winter water storage caused by a slight lag in conductivity

behind melt. Although long lag times of multiple weeks to a month are implausible

because they cause an unrealistic drop in water pressure, shorter lag times around a

week are feasible. The drainage system must respond relatively quickly to reduced

melt input or we would likely see a similar drop in borehole pressures. Figure 1.6

shows that a week lag time causes a noticeable (≈ 16%) difference in winter water

storage after high and low melt summers. In particular, the low melt summer is

followed by a high storage winter and vice versa.

High melt summers result in a well connected and efficient linked cavity system.

Stored water in the sheet drains quickly before the linked cavity system becomes

largely disconnected in the winter. After low melt summers, the linked cavity system

is not as well connected. Less stored water drains during the melt shut off period

before the linked cavity system transitions to a mostly isolated system. Thus, slow ice

flow after a high melt summers could be caused predominantly by low winter water

storage rather than low pressure.
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1.5.4 Conclusions and Future Work

We have shown that a common model of subglacial drainage through linked cavi-

ties underpredicts winter pressure when compared to borehole observations. Through

a series of model experiments, we determined that the most feasible solution to this

problem is to allow hydraulic conductivity to vary both spatially and temporally.

Variations in melt input result in changes to the connectivity and efficiency of the

linked cavity system that are not captured in the model if conductivity is constant.

Our results support the idea that differences in sliding speed following high or

low melt summers are driven primarily by differences in winter water storage rather

than pressure. High melt summers lead to a well connected cavity system that drains

quickly as melt input decreases provided there is a slight (approximately 1 week)

delay between reduced melt input and reduced conductivity. Low melt summers lead

to a less efficient cavity system that drains more slowly. Consequently, there is less

winter storage after a high melt summers than low melt summers. These differences

in storage are possible without significant differences in winter pressure.

Additional work may be needed to assess the impact of channels on winter pressure

and water storage. We expect that our primary conclusion – that reducing hydraulic

conductivity is the most feasible way of preventing low winter pressure – will apply

directly to channel models. How channels might impact winter water storage after

high and low melt summers is difficult to predict. Further work is also needed to refine

the geometric factor khα−1 in the flux relation. Small scale models that simulate

individual links and cavities could be used to devise an improved aggregate flux

relation that accounts for changing drainage system connectivity. Physical processes

often neglected in large scale models such as dissipative opening and refreezing of links

or ice uplift could be important. Until the physical processes controlling conductivity

are better understood, tuning models to match observations such as we have done

here done here, or inverse methods may be used to constrain the conductivity.
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1.6 Code Repository

The sheet model implementation used in this paper is available at https://github.

com/JacobDowns/SheetModel. A collection of model experiments found in this paper

is also available at https://github.com/JacobDowns/SheetExperiments.
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